ABFE¶
This document describes how to run a ABFE simulation using Deep Origin tools.
Prerequisites¶
We assume that we have an initialized and configured Complex
object:
from deeporigin.drug_discovery import Complex
sim = Complex.from_dir("/path/to/folder/")
sim.connect()
Starting an ABFE run¶
Single ligand¶
To run an end-to-end ABFE workflow on a single ligand, we use:
sim.abfe.run_end_to_end(ligand_ids=["Ligands-1"]) # for example
This queues up a task on Deep Origin. When it completes, outputs will be written to the appropriate column in this database.
You will see a message printed to screen similar to:
Expected output
🧬 Job started with ID: 20f05e96, execution ID: x9rl5eghrpqwyiciehc3e
Multiple ligands¶
To run an end-to-end ABFE workflow on multiple ligands, we use:
sim.abfe.run_end_to_end(ligand_ids=["Ligands-1", "Ligands-2"])
Omitting the ligand IDs will run ABFE on all ligands in the Complex
object.
sim.abfe.run_end_to_end()
Each ligand will be run in parallel on a separate instance.
Parameters¶
Viewing parameters¶
The end to end ABFE tool has a number of user-accessible parameters. To view all parameters, use:
sim.abfe._params.end_to_end
Expected output
This will print a dictionary of the parameters used for ABFE, similar to:
{
"abfe": {
"add_fep_repeats": 0,
"amend": "__NO_AMEND",
"annihilate": true,
"atom_mapping_threshold": 0.01,
"em_all": true,
"em_solvent": true,
"emeq_md_options": {
"T": 298.15,
"cutoff": 0.9,
"fourier_spacing": 0.12,
"hydrogen_mass": 2.0,
"Δt": 0.004
},
"fep_windows": [
{
"restraints_A": [
0.0,
0.01,
0.025,
0.05,
0.1,
0.35,
0.5,
0.75,
1.0
]
},
{
"coul_A": [
1.0,
0.8,
0.6,
0.4,
0.2,
0.0
]
},
{
"vdw_A": [
1.0,
0.9,
0.8,
0.7,
0.6,
0.5,
0.4,
0.3,
0.2,
0.1,
0.0
]
}
],
"mbar": 1,
"npt_reduce_restraints_ns": 2.0,
"nvt_heating_ns": 1.0,
"prod_md_options": {
"T": 298.15,
"barostat": "MonteCarloBarostat",
"barostat_exchange_interval": 500,
"cutoff": 0.9,
"fourier_spacing": 0.12,
"hydrogen_mass": 2.0,
"integrator": "BAOABIntegrator",
"Δt": 0.004
},
"repeats": 1,
"run_name": "binding",
"skip_emeq": "__NO",
"softcore_alpha": 0.5,
"steps": 1250000,
"system": "complex",
"test_run": 0,
"thread_pinning": 0,
"thread_pinning_offset": 0,
"threads": 0,
"workers": 0
},
"complex_prep": {
"include_ligands": 1,
"include_protein": 1,
"sysprep_params": {
"charge_method": "bcc",
"do_loop_modelling": false,
"force_field": "ff14SB",
"is_lig_protonated": true,
"is_protein_protonated": true,
"keep_waters": true,
"lig_force_field": "gaff2",
"ligand_res_names": [
"LIG"
],
"padding": 1.0,
"save_gmx_files": false
},
"test_run": 0,
"thread_pinning": 0,
"thread_pinning_offset": 0
},
"emeq": {
"amend": "__NO_AMEND",
"em_all": true,
"em_solvent": true,
"emeq_md_options": {
"T": 298.15,
"cutoff": 0.9,
"fourier_spacing": 0.12,
"hydrogen_mass": 2.0,
"Δt": 0.004
},
"from_run": "__USE_SYSTEM",
"npt_reduce_restraints_ns": 0.2,
"nvt_heating_ns": 0.1,
"test_run": 0,
"thread_pinning": 0,
"thread_pinning_offset": 0,
"threads": 0
},
"ligand_prep": {
"include_ligands": 1,
"include_protein": 0,
"sysprep_params": {
"charge_method": "bcc",
"do_loop_modelling": false,
"force_field": "ff14SB",
"is_lig_protonated": false,
"is_protein_protonated": false,
"keep_waters": false,
"lig_force_field": "gaff2",
"padding": 1.0,
"save_gmx_files": false
},
"test_run": 0,
"thread_pinning": 0,
"thread_pinning_offset": 0
},
"md": {
"amend": "__NO_AMEND",
"continue": 0,
"from_run": "__USE_SYSTEM",
"md_options": {
"T": 298.15,
"barostat": "MonteCarloBarostat",
"barostat_exchange_interval": 500,
"cutoff": 0.9,
"fourier_spacing": 0.12,
"hydrogen_mass": 2.0,
"integrator": "BAOABIntegrator",
"Δt": 0.004
},
"run_name": "md",
"steps": 250000,
"test_run": 0,
"thread_pinning": 0,
"thread_pinning_offset": 0,
"threads": 0
},
"solvation": {
"add_fep_repeats": 0,
"amend": "__NO_AMEND",
"annihilate": true,
"atom_mapping_threshold": 0.01,
"em_all": true,
"em_solvent": true,
"emeq_md_options": {
"T": 298.15,
"cutoff": 0.9,
"fourier_spacing": 0.12,
"hydrogen_mass": 2.0,
"Δt": 0.004
},
"fep_windows": [
{
"coul_A": [
1.0,
0.8,
0.6,
0.4,
0.2,
0.0
]
},
{
"vdw_A": [
1.0,
0.9,
0.8,
0.7,
0.6,
0.5,
0.4,
0.3,
0.2,
0.1,
0.0
]
}
],
"mbar": 1,
"npt_reduce_restraints_ns": 0.2,
"nvt_heating_ns": 0.1,
"prod_md_options": {
"T": 298.15,
"barostat": "MonteCarloBarostat",
"barostat_exchange_interval": 500,
"cutoff": 0.9,
"fourier_spacing": 0.12,
"hydrogen_mass": 2.0,
"integrator": "BAOABIntegrator",
"Δt": 0.004
},
"repeats": 1,
"skip_emeq": "__NO",
"softcore_alpha": 0.5,
"steps": 300000,
"test_run": 1,
"thread_pinning": 0,
"thread_pinning_offset": 0,
"threads": 0,
"workers": 0
}
}
Modifying parameters¶
Any of these parameters are modifiable using dot notation. For example, to change the number of steps in the MD step, we can use:
sim.abfe._params.end_to_end.md.steps = 500000
Using test_run
¶
The test run parameter can be used to run ABFE for a short number of steps, to verify that all steps execute quickly. This should not be used to run production simulations.
To set the test run parameter to 1, we can use:
from deeporigin.utils.core import set_key_to_value
set_key_to_value(sim.abfe._params.end_to_end, "test_run", 1)
Results¶
Viewing results¶
After initiating a run, we can view results using:
sim.abfe.show_results()
This shows a table similar to:
Expected output
Exporting results for analysis¶
These results can be exported for analysis using:
df = sim.abfe.get_results()
df
Expected output
Binding | Solvation | AnalyticalCorr | Std | Total | ID | File | r_exp_dg | SMILES |
---|---|---|---|---|---|---|---|---|
16.23 | -27.53 | -7.2 | 0.0 | -36.50 | Ligands-1 | brd-2.sdf | -9.59 | [H]C1=C([H])C(C(=O)N(C([H])([H])[H])C([H])([H])[H])=C([H])C(C2=C([H])N(C([H])([H])[H])C(=O)C3=C2C([H])=C([H])N3[H])=C1[H] |
-454.99 | -722.01 | -7.58 | 0.0 | -259.44 | Ligands-2 | brd-3.sdf | -7.09 | [H]C([H])=C([H])C([H])([H])N1C(=O)C2=C(C([H])=C([H])N2[H])C(C2=C([H])C([H])=C([H])C(C(=O)N(C([H])([H])[H])C([H])([H])[H])=C2[H])=C1[H] |
-600.31 | -1354.79 | -7.47 | 0.0 | -747.00 | Ligands-3 | brd-4.sdf | -8.64 | [H]C1=C([H])C(C(=O)N(C([H])([H])[H])C([H])([H])[H])=C([H])C(C2=C([H])N(C([H])([H])/C([H])=C([H])C([H])([H])[H])C(=O)C3=C2C([H])=C([H])N3[H])=C1[H] |