deeporigin.drug_discovery.docking
¶
This module encapsulates methods to run docking and show docking results on Deep Origin
Attributes¶
Classes¶
Docking
¶
Bases: WorkflowStep
class to handle Docking-related tasks within the Complex class.
Objects instantiated here are meant to be used within the Complex class.
Attributes¶
Functions¶
get_results
¶
get_results(
*, file_type: str = "csv"
) -> DataFrame | None | list[str]
return a list of paths to CSV files that contain the results from docking
run
¶
run(
*,
pocket: Optional[Pocket] = None,
box_size: Optional[
tuple[Number, Number, Number]
] = None,
pocket_center: Optional[
tuple[Number, Number, Number]
] = None,
batch_size: Optional[int] = 32,
n_workers: Optional[int] = None,
_output_dir_path: Optional[str] = None,
use_parallel: bool = True
)
Run bulk docking on Deep Origin. Ligands will be split into batches based on the batch_size argument, and will run in parallel on Deep Origin clusters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
box_size
|
tuple[float, float, float]
|
box size |
None
|
pocket_center
|
tuple[float, float, float]
|
pocket center |
None
|
batch_size
|
int
|
batch size. Defaults to 30. |
32
|
n_workers
|
int
|
number of workers. Defaults to None. |
None
|
use_parallel
|
bool
|
whether to run jobs in parallel. Defaults to True. |
True
|
show_results
¶
show_results()
show results of bulk Docking run in a table, rendering 2D structures of molecules